欧美free性护士vide0shd,老熟女,一区二区三区,久久久久夜夜夜精品国产,久久久久久综合网天天,欧美成人护士h版

目錄

柚子快報(bào)邀請(qǐng)碼778899分享:R語(yǔ)言實(shí)戰(zhàn)學(xué)習(xí)--回歸

柚子快報(bào)邀請(qǐng)碼778899分享:R語(yǔ)言實(shí)戰(zhàn)學(xué)習(xí)--回歸

http://yzkb.51969.com/

文章目錄

普通最小二乘回歸(OLS)簡(jiǎn)單線性回歸多項(xiàng)式回歸多元線性回歸

回歸診斷標(biāo)準(zhǔn)方法QQ圖正態(tài)性檢驗(yàn)殘差圖誤差的獨(dú)立性成分殘差圖(偏殘差圖) 線性同方差性線性模型假設(shè)綜合驗(yàn)證異常觀測(cè)值高杠桿值強(qiáng)影響點(diǎn)變量添加圖氣泡圖

選擇最佳模型逐步回歸全子集回歸k重交叉驗(yàn)證相對(duì)重要性

普通最小二乘回歸(OLS)

OLS回歸是通過(guò)預(yù)測(cè)變量的加權(quán)和來(lái)預(yù)測(cè)量化的因變量

簡(jiǎn)單線性回歸

fit <- lm(weight~height,data = women)

summary(fit) ## 模型擬合結(jié)果

fitted(fit) ## 模型的擬合值

residuals(fit) ## 擬合模型的殘差

plot(women$height,women$weight, ## 簡(jiǎn)單做圖

xlab = "Height",

ylab = "Weight")

abline(fit)

anova(fit) ##生成擬合模型的方差分析表

多項(xiàng)式回歸

fit <- lm(weight~height+I(height^2),data = women) ## 一元二次回歸

summary(fit)

plot(women$height,women$weight, ## 簡(jiǎn)單做圖

xlab = "Height",

ylab = "Weight")

lines(women$height,fitted(fit))

fit <- lm(weight~height+I(height^2)+I(height^3),data = women) ## 一元三次回歸

summary(fit)

library(car)

scatterplot(weight~height,data = women,

spread=FALSE,smoother.arg=list(lty=2),pch=19,

main="Women Age 30-39",

xlab = "Height",

ylab = "Weight")

多元線性回歸

state <- as.data.frame(state.x77[,c(5,1,3,2,7)])

cor(state)

library(car)

scatterplotMatrix(state,spread=FALSE,smoother.args=list(lty=2),

main="Scatter Plot Matrix")

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state) ## 多元回歸

summary(fit)

fit <- lm(mpg~hp+wt+hp:wt,data = mtcars) ##有顯著交互的回歸

summary(fit)

library(effects)

plot(effect("hp:wt",fit,,list(wt=c(2.2,3.2,4.2))),mutiline=TRUE)

confint(fit)

回歸診斷

標(biāo)準(zhǔn)方法

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

par(mfrow=c(2,2))

plot(fit)

左上表示殘差分布圖 右上表示正態(tài)分布檢驗(yàn),落在線上表示符合正態(tài)分布 左下表示方差齊性檢驗(yàn),隨機(jī)分布則表示方差齊性 右下是殘差與杠桿圖,表示可以從中鑒別離群點(diǎn)、高杠桿點(diǎn)和強(qiáng)影響點(diǎn)

QQ圖正態(tài)性檢驗(yàn)

library(car)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

par(mfrow=c(1,1))

qqPlot(fit)

殘差圖

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

residplot <- function(fit,nbreaks=10){

z <- rstudent(fit)

hist(z,breaks = nbreaks,freq = FALSE,

xlab = "Studentized Residual",

main = "Distribution of Errors")

rug(jitter(z),col = "brown")

curve(dnorm(x,mean = mean(z),sd=sd(z)),

add = TRUE,col="blue",lwd=2)

lines(density(z)$x,density(z)$y,

col="red",lwd=2,lty=2)

legend("topright",

legend = c("Normal Curve","Kernel Density Curve"),

lty = 1:2,col = c("blue","red"),cex = .7)

}

residplot(fit)

誤差的獨(dú)立性

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

durbinWatsonTest(fit)

成分殘差圖(偏殘差圖) 線性

library(car)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

crPlots(fit)

線性模型對(duì)該模型似乎是合適的

同方差性

library(car)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

ncvTest(fit)

spreadLevelPlot(fit)

線性模型假設(shè)綜合驗(yàn)證

library(gvlma)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

gvmodel <- gvlma(fit)

summary(gvmodel)

異常觀測(cè)值

library(car)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

outlierTest(fit)

高杠桿值

library(car)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

hat.plot <- function(fit){

p <- length(coefficients(fit))

n <- length(fitted(fit))

plot(hatvalues(fit),main = "Index Plot of Hat Value")

abline(h=c(2,3)*p/n,col="red",lty=2)

identify(1:n,hatvalues(fit),names(hatvalues(fit)))

}

hat.plot(fit)

強(qiáng)影響點(diǎn)

library(car)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

cutoff <- 4/(nrow(state)-length(fit$coefficients)-2)

plot(fit,which = 4,cook.levels = cutoff)

abline(h=cutoff,lty=2,col="red")

變量添加圖

library(car)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

avPlots(fit,ask=FALSE,id.method="identity")

氣泡圖

library(car)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

summary(fit)

influencePlot(fit,id.method="identity",main="Influence Plot",

sub="Circle size is proportional to Cook's distance")

選擇最佳模型

fit1 <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

fit2 <- lm(Murder~Population+ Illiteracy,data = state)

anova(fit1,fit2)

AIC(fit1,fit2) ## Aic 方法

逐步回歸

library(MASS)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

stepAIC(fit,direction = "backward")

全子集回歸

library(leaps)

fit <- lm(Murder~Population+ Illiteracy+Income+Frost,data = state)

leaps <- regsubsets(Murder~Population+ Illiteracy+Income+Frost,data = state,nbest = 4)

plot(leaps,scale = "adjr2")

library(car)

subsets(leaps,statistic = "cp",

main="Cp Plot for All Subsets Regression")

abline(1,1,lty=2,col="red")

k重交叉驗(yàn)證

shrinkage <- function(fit, k=10){

require(bootstrap)

theta.fit <- function(x,y){lsfit(x,y)}

theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef}

x <- fit$model[,2:ncol(fit$model)]

y <- fit$model[,1]

results <- crossval(x, y, theta.fit, theta.predict, ngroup=k)

r2 <- cor(y, fit$fitted.values)^2

r2cv <- cor(y, results$cv.fit)^2

cat("Original R-square =", r2, "\n")

cat(k, "Fold Cross-Validated R-square =", r2cv, "\n")

cat("Change =", r2-r2cv, "\n")

}

states <- as.data.frame(state.x77[, c("Murder", "Population", "Illiteracy", "Income", "Frost")])

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data = states)

fit2<-lm(Murder~Population+Illiteracy,data=states)

shrinkage(fit)

shrinkage(fit2)#R平方減少得越少,預(yù)測(cè)則越精確。

相對(duì)重要性

states <- as.data.frame(state.x77[,c("Murder", "Population",

"Illiteracy", "Income", "Frost")])

zstates <- as.data.frame(scale(states))

#scale()函數(shù)將數(shù)據(jù)標(biāo)準(zhǔn)化為均值為0、標(biāo)準(zhǔn)差為1的數(shù)據(jù)集,這樣用R回歸即可獲得標(biāo)準(zhǔn)化的回歸系數(shù)。

#(注意,scale()函數(shù)返回的是一個(gè)矩陣,而lm()函數(shù)要求一個(gè)數(shù)據(jù)框,你需要用一個(gè)中間步驟來(lái)轉(zhuǎn)換一下。

zfit <- lm(Murder~Population + Income + Illiteracy + Frost, data=zstates)

coef(zfit)#Illiteracy是最重要的預(yù)測(cè)變量,而Frost是最不重要的

#相對(duì)重要性~相對(duì)權(quán)重法

relweights <- function(fit,...){

R <- cor(fit$model)

nvar <- ncol(R)

rxx <- R[2:nvar, 2:nvar]

rxy <- R[2:nvar, 1]

svd <- eigen(rxx)

evec <- svd$vectors

ev <- svd$values

delta <- diag(sqrt(ev))

lambda <- evec %*% delta %*% t(evec)

lambdasq <- lambda ^ 2

beta <- solve(lambda) %*% rxy

rsquare <- colSums(beta ^ 2)

rawwgt <- lambdasq %*% beta ^ 2

import <- (rawwgt / rsquare) * 100

import <- as.data.frame(import)

row.names(import) <- names(fit$model[2:nvar])

names(import) <- "Weights"

import <- import[order(import),1, drop=FALSE]

dotchart(import$Weights, labels=row.names(import),

xlab="% of R-Square", pch=19,

main="Relative Importance of Predictor Variables",

sub=paste("Total R-Square=", round(rsquare, digits=3)),

...)

return(import)

}

states <- as.data.frame(state.x77[,c("Murder", "Population",

"Illiteracy", "Income", "Frost")])

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)

relweights(fit, col="blue")#在這個(gè)模型中Illiteracy比Income相對(duì)更重要

柚子快報(bào)邀請(qǐng)碼778899分享:R語(yǔ)言實(shí)戰(zhàn)學(xué)習(xí)--回歸

http://yzkb.51969.com/

相關(guān)鏈接

評(píng)論可見(jiàn),查看隱藏內(nèi)容

本文內(nèi)容根據(jù)網(wǎng)絡(luò)資料整理,出于傳遞更多信息之目的,不代表金鑰匙跨境贊同其觀點(diǎn)和立場(chǎng)。

轉(zhuǎn)載請(qǐng)注明,如有侵權(quán),聯(lián)系刪除。

本文鏈接:http://gantiao.com.cn/post/18840319.html

發(fā)布評(píng)論

您暫未設(shè)置收款碼

請(qǐng)?jiān)谥黝}配置——文章設(shè)置里上傳

掃描二維碼手機(jī)訪問(wèn)

文章目錄